Lecture No. 8

Longitudinal Dynamics in Storage Rings

Fernando Sannibale
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Longitudinal Dynamics

F. Sannibale On TraJeCtory L\2UAA A

seagerings  PaAth Length Dependence Iqj’s

P _Symc
B, 9B,

o=

L, = Trajectory length between A and B
L =Trajectory length between A and C

—:acﬁ where ac Is constant
Po
W _ mc’+E E y 01+ Eq,,,/0.938 for protons
= = =1+
4 rno(:2 rno(:2 mo(:2 y L1+ Ey., /0511 for eectrons
For y>>1 :&:%%D%E
I-O pO 0
In the example (sector bending magnet) L > Lyso that a- >0
Higher energy particles will leave the magnet later. 2
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Longitudinal Dynamics

songerings  Path Length Dependence IS%]

F. Sannibale on Velocity Rl
Consider two particles with different momentum on parallel trajectories:
Lo
pl = pO +Ap L]_ ]

At a given instant t:

AL _L-L, OB
L=(8+08)ct  Lo=pc L LA

But: p=Bymc = Op=mcA(By)=mcy’sp
L0-50 AL _ 1 4p
- Po 4] L, VP,

* This path length dependence on momentum applies everywhere,
also in straight trajectories.

e The effect quickly vanishes for relativistic particles.

 Higher momentum particles precede the ones with lower momentusm.
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Longitudinal Dynamics

F. Sannibale

Stofad Sl Total Path Length N’{s

Dependence on Momentum Q)

e Let’s consider a particle moving in aregion in the ds

presence of electric and magnetic fields. Under the A
action of such fields, the particle will define a
trajectory of length L between the points A and B. B

* We define as the reference orbit the trajectory of length L, that the
reference particle with nominal energy E, describes between A and B.
The position sof a generic particle will be referred to s, the position of

the reference particle on the reference orbit:

AS=S— S, for As< 0the particle precedes the reference particle

* In this reference frame we can combine the previous results and
obtain for the path length dependence on momentum:

— = lc— called the momentum compaction

AS _( 1 _ jAp _ . Ap| Where the constant 7. = y? - a. is
C

4
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Storage Rings

Longitudinal Dynamics E n e r g y Var | a.t | O n

F. Sannibale

 The energy gain for a particle that moves from A to B is given by:
ds

L
A/E(LXB AE:qj;EF(r_,t)EE:qV

« We define as V the voltage gain for the particle.
V depends only on the particle trajectory and includes the contribution of
every electric field present in the area (RF fields, space charge fields,
fields due to the interaction with the vacuum chamber, ...)

e The particle can also experience energy variations U(E) that depend also
on its energy, as for the case of the radiation emitted by a particle under
acceleration (synchrotron radiation when the acceleration is transverse).

* The total energy variation will be given by the sum of the two terms:

AE. =qV +U(E)
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Storage Rings The Rate Of

Longitudinal Dynamics

F. Sannibale Change of Energy

The energy variation for the reference particle is given by:

AE (8)=aV(s)+U(E)
For particle with energy E = E, + 4E and orbit position s=g, + 4s.

As+u(|50)+d—U
S dE
Where the last expression holds for the case where

As<< L, (reference orbit length) and 4E << E,.

In this approximation we can express the average rate of change of
the energy respect to the reference particle energy by:

AE

Eo

AET(s>:qv(so+As)+u(Eo+Ae>mqv(so>+q‘;—§

dAE DAET(S)—AET(SO) dAE 1 qdv Ast QY| AE
dt To dt T, ds|g dE ¢,
L, _ L, =lenght of the reference orbit between A and B
where T, =—— with _ .
B,C B,c = velocity of the reference particle 6
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Longitudinal Dynamics

F. Sannibale Motion Equation @l

In the present approximation of small 4sand 4E, the average rate of change
of the particle position respect to the reference particle position is:

das 1, Op » %_‘ﬁoc %» d*As _ _ fB,c7)c dip

soagerings  TOWards the Longitudinal Iqj’s

- C

dL, T, °p, . dt> p, dt
But: and remembering:
2
dp:d—E:ApDE dAZS:_I7C dAE dAED1 qu As+d—U AE
jte B,C dt p, dt dt T,| ds dE|
2
d Azs:_nc q av A TTe 1 du __c qav As- B.ch. Ap 1 dU
dt P, T, ds . p, T, dE E, P, T, ds . p, T, dE £,
d°As _ . q dV 1 dU| dAs
— = — - ==
dt Po Tp dS|g T, dE|g, dt
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Storage Rings The Longitudinal

Longitudinal Dynamics

F. Sannibale Motion Equation

Finally, by defining the quantities:

1 g dVv 0 1 duU

P, T, ds 0 2T, dE

Q° =1]c

Eo

We obtain the equations of motion for the longitudinal plane:

2
d A25+20D%+QZAS:O
dt dt As<<L,
AE << E,
AE(t) = - Po 988
e dt

We will study the case of storage rings where dV/dsis mainly due to the
RF system used for restoring the energy lost per turn by the beams

Fundamental Accelerator Theory, Simulations and Measurement Lab — Arizona State University, Phoenix January 16-27, 2006




Storage Rings The Damped Oscillator

Longitudinal Dynamics

F. Sannibale Eq u at| O n

2 This expression is the well known
d*As +2a, % + Q?As =0 damped harmonic oscillator equation,
dt? dt which has the general solution:

As(t) De (AeiQt + Be“Qt)

a, >0 and Q*>0

a, >0 < damped oscillation Lo
. . . \\ -apt
ap <0 < anti—damped oscillation| _ .1} /
; ool
Q°>0 - stable oscillation i S |
, . A5 | e—aDt (Ae|Qt _I_Be—th)"
Q° <0 = unstablemotion . | . . 1 )
] 10 J% e [n.“_?iﬂ 40 Rl L)
The stable solution represents an oscillation with frequency 277Q and with
exponentially decreasing amplitude. 9
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Longitudinal Dynamics .
F. Sannibale Storage Rings o)

* The case of damped oscillations is exactly what we want for storing
particles in a storage ring.

) o
. dE

 The synchrotron radiation (SR) emitted when particles are on a curved
trajectory satisfies the condition. The SR power scales as:

du/dt =-P, O-(8y)"/p? = —(y2 —1)2/,02 0 = trajectory radius
* Typically, synchrotron radiation damping is very efficient in electron
storage rings and negligible in proton machines.

« The damping time lay (~ ms for e, ~ 13 hours LHC at 7 TeV) is usually
much larger than the period of the longitudinal oscillations 1/271Q (~ us).
This implies that the damping term can be neglected when calculating the
particle motion for t<< lap :

somgerings  Da@mping in the Case of IS%]

a. >0 ay=————

+ Q%As = Harmonic oscillator equation

dt? 10
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Longitudinal Dynamics

F. Sannibale |n Storage RlngS

Let’'s consider a storage ring with reference trajectory of length L.

Vee (t) =V sin(awy t)

[
L, 1 27
0~ Ha Tee = : =
,3 C RF Wrr
15 - f
L0 - T,=hT, = f, =7
E . /\ /\ /\ /\ | h
£ 0o Synchronicity Condition
E 0.5 \/ - -
wp (Vold LM ] Themteger.h Is called
R S [ fl‘ L . the harmonic number y
Tune [a.u
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Storage Rings The Synchrotron

Longitudinal Dynamics

F. Sannibale Frequen Cy and Tune

For our storage ring:

Q? =/, Ve (t) =V sin(wt) =V sin(ha, t)

pO TO dS S A
dav| _ 1 dv| _hgV
s=p,ct ds|, ~ Bcdt], Bc

/ Q
Q2 =g 1 eV cos(g, ) Vs = —
Py 275,C W

synchrotron frequency synchrotron tune

cos{te 1 )

@. = - 1, = synchronous phase

In a storage ring the at equilibrium: 0
Ws)+U(E)=tVsn(p)-U, =0 [ ang.=t

Where U, is the energy lost per turn and V is integrated over turn.12
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Storage Rings The Synchrotron

Longitudinal Dynamics

F. Sannibale Oscillations
2
It a, <<Q » d A23+Q2AS: 0 Additionally: AE(t) = =0 dAs
dt n. dt
» As = AScos(Qt +¢) AE = 08P sn(at + )
flc
A different set of variables:
Phase: ¢ = ¢ —¢, ¢ =gt s=[cCt » S:ﬁoci
Wer
Relative Momentum Deviation: o0 = % AE = ,cAp
0
— . 9Q Synchrotron Oscillations
$=pooslQt+y) 9= hea7. sn(@t+y) 0o Lo and ZE << E,.
13

Fundamental Accelerator Theory, Simulations and Measurement Lab — Arizona State University, Phoenix January 16-27, 2006



Storage Rings The Longitudinal

Longitudinal Dynamics

F. Sannibale P h aS e S p aC e

We just found: ¢ = @ cos(Qt + ¢

» g—2+52(h2"gcj =1

This equation represents an ellipse in the
longitudinal phase space {¢, &

With damping:
¢ = pe " cos(Qt +)

5=_99
ha7e

e ™' sin(Qt +¢)

bit

pQ
0= sin(Qt +
th”C ( )
Ne >0 dl
el .
ha)OQC
\ ¢

»

Ne >0

9
7 )
2

In rings with negligible synchrotron radiation (or with negligible
non-Hamiltonian forces, the longitudinal emittance is conserved.

This is the case for heavy ion and for most proton machines. 14
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F. Sannibale Q1 )

We showed that for the synchronous phase:

V
But
At AS 1 Ap Ap Vie (t) =V Sin(wRF t)
- =7 =2 " lc |/ ="1lc—— e
T Lo \y P, o / \/
For positive charge particles:
Forn. >0 = ¢ stable, @2 unstable For negative charge
particles all the phases
For 7. <0 = ¢; unstable, ¢Z stable are shifted by 7

energy the energy at during energy ramping requires

We define as transition 1 % Crossing the transition energy
Y _
which n- changes sign. a phase jump of ~ 71 {5
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Storage Rings Large Amplitude

Longitudinal Dynamics

F. Sannibale Osclillations

So far we have used the small oscillation approximation where:

AET(w):qv(q»s+¢):qujn(¢s+¢)mqv(¢s)+q‘;—; b = Vg, +qVg
Ps

In the more general case of larger phase oscillations:

AE- () =qV (4. +#) DqVsin(ps +¢)  And by Numerical integration:
RS gs#0or

RF “ Bucket
/

Separatrlces f%

« For larger amplitudes, trajectories in the phase space are not ellipsis
anymore.

« Stable and unstable orbits exist. The two regions are separated by a special
trajectory called separatrix

 Larger amplitude orbits have smaller synchrotron frequencies 1°
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Storage Rings

Longiucinal Dynamics VIO MeNtum Acceptance

F. Sannibale

The RF bucket is the area of the longitudinal phase space where a particle
orbit is stable

(AP/Py) acc-

The momentum acceptance is defined as the maximum momentum that a
particle on a stable orbit can have.

(Apjz _ 2V [Ap] _F(Q  2av

Po ) acc ) ”h‘”c‘ﬁc Po Po ) acc 2Q ”h‘nc‘ﬁc Po

_ 1 v
F(Q):Z(w/Q2 —1—arccosé} Q= sng. U,

Over voltage factor

17
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F. Sannibale Q)

* In electron storage rings, the statistical emission of synchrotron radiation
photons generates gaussian bunches.

 The over voltage Qis usually large so that the core of the bunch “lives” in
the small oscillation region of the bucket. The equation of motion in the
phase space are elliptical:

2 .
¢2 +52(hw0,7C] _ ¢ — ha*o’?c 5_:> AS = Cl)c Ap
Q Po

* If gy/p, Is the rms relative momentum spread of the gaussian distribution,
then the rms bunch length is given by:

p——lle Iy _ c’ polAgo’7c: Iy
= 2m h 2V cos@s) Po

Q p,
* In the case of heavy ions and of most of protons machines, the whole RF
bucket is usually filled with particles. The bunch length | is then proportional
to the difference between the two extreme phases of the separatrix:

| = (¢2 _¢1)/]RF /277 18
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Storage Rings EffeCtS Of the

Longitudinal Dynamics

F. Sanibale Synchrotron Radiation

* A charged particle when accelerated radiates.

* In high energy storage rings transverse acceleration induces significant
radiation (synchrotron radiation) while longitudinal acceleration generates
negligible radiation (1/)4).

”UO: _[PSR dt energy lost per turn
du - _p 2cre E4 finite p
d F 3(me?) P
me’) Lol

r, = classical electron radius

= Px(E, )dt
° 2T, dE| 2TdE[§ )]

apy, 0y dampinginall planes

0 = trajectory curvature

Iy

p, equilibrium momentum spread and emittances
Ex i€y

e Synchrotron radiation plays a major role in the dynamics of an electron
storage ring 19
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Storage Rings

Longitudinal Dynamics E n e r g y I_ O St p er Tu I’ n

F. Sannibale
4
U,= ‘[PSR dt energy lost per turn a _ Py = - 2Cr . E2
finite p dt 3(m0C2) P

e For relativistic electrons:
1 2r EZ ds
ds U.== P. ds= e 0 —_
= = 0 SR

s=fct Uct = dt - » C ﬁni.Lp 3(moc2)3 ﬁni.LpIOZ

* In the case of dipole magnets with constant radius p(iso-magnetic case):

Arrr. EZ
UO_ e 0

) 3(mocz)3 P

 The average radiated power is given by:

U 4rrcr. E?
P — 0 — e 0
() To 3(moc2)3 pL

L = ring circumference
20
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F. Sannibale Q1)

du_ _ __ 2cr, E* __1d :iibp (Eo)dt]
it T 3(me?) P > 2T, dE|g 2T, dEV T
U
By performing the calculation one obtains: ap=— (2+ D)
2T, E,
Where D depends on the lattice parameters. D=g L
For the iso-magnetic separate function case: ¢ 270
Analogously, for the transverse plane:
U, U,
a, = 1-D a, =
X ZTOEO( ) and Y T E,
Sometimes the partition numbers are used:
J;=2+D J,=1-D J, =1 with Z‘Ji =4

Fundamental Accelerator Theory, Simulations and Measurement Lab — Arizona State University, Phoenix January 16-27, 2006



Storage Rings Quantum Nature Of

Longitudinal Dynamics

F. Sanibale Synchrotron Radiation

 We saw that synchrotron radiation induces damping in all the
planes.

e Because of that, one would expect that all the particles should
collapse in a single point.

* This does not happen because of the quantum nature of
synchrotron radiation.

 In fact, photons are randomly emitted in quanta of discrete
energy and every time a photon is emitted the parent electron
undergoes to a “jump” in energy.

e Such a process perturbs the electron trajectories exciting
oscillations in all the planes.

 These oscillations grow until reaching equilibrium when balanced
by the radiation damping.

22
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Longitudinal Dynamics

F. Sannibale Momentum Spread Q)] |

« At equilibrium the momentum spread is given by:

mz _C fupts m _C

JsP

Storage Rings Em |ttan C e an d Isr{s

where C, =3.84x 10 m

Po Js §3/,02d5 . o .
ISO—magnetic case
e For the horizontal emittance at equilibrium:
)2 $H/p’ds | |
£=C, > } 2 where:  H(s)= 8.7 + yen* + 20017
Iy §]/,0 ds

 In the vertical plane, when no vertical bend is present, the synchrotron

radiation contribution to the equilibrium emittance is very small and the

vertical emittance is defined by machine imperfections and nonlinearities
that couple the horizontal and vertical planes:

K 1 . .
& =——¢& and & =——¢ with « = coupling factor
K+1 K+1
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Longitudinal Dynamics

F. Sannibale Sto rag e Rl n g S

At this point we have discussed the motion of a particle in an
accelerator for all the planes.

It can be helpful remarking the time scale for the different
phenomena governing the particle dynamics.

Damping: several ms for electrons, ~ infinity for heavier particles

Synchrotron oscillations: ~ tens of us

Revolution period: ~ hundreds of ns to us

Betatron oscillations: ~ tens of ns
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Longitudinal Dynamics
F. Sannibale

e Calculate the general solution for the damped harmonic oscillator
equation
 Calculate the ratio between the synchrotron radiation power radiated by
a particle in the Large Hadron Collider (LHC), the proton collider at CERN,
and the one radiated by a particle in the Advanced Light Source (ALS), the

electron storage ring in Berkeley. The magnet bending radius is ~2810 m
and ~5 m and the particle energy is 7000 GeV and 1.9 GeV for the LHC and

the ALS respectively. (Remember that the electron mass is 9.1095 103! Kg
while the proton one is 1.6726 10?7 KQg)

e Calculate the synchrotron frequency and tune for the ALS when the ring
IS operating in the following configuration: RF = 500 MHz, harmonic
number = 328, E = 1.9 GeV, momentum compaction = 0.00137, energy lost
per turn = 279 keV, peak RF voltage = 1.3 MV.

QLY

e Calculate the momentum acceptance for the ALS ring. Compare it with
the acceptance value that the ring would have for zero synchronous
phase. .
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